[1] Wang G J, Hu Y F, Zhang S et al. Water identification from the GF-1 satellite image based on the deep convolutional neural networks[J]. National Remote Sensing Bulletin, 26, 2304-2316(2022).
[2] Yin Y Q, Li J G, Yu T et al. The study of object-oriented water body extraction method based on high resolution RS image[J]. Bulletin of Surveying and Mapping, 81-85(2015).
[3] McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 17, 1425-1432(1996).
[4] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. National Remote Sensing Bulletin, 9, 589-595(2005).
[5] Zhang K, Wu X Y, Wu N et al. Comparative analysis and improvement of water body extraction methods based on GF-1 remote sensing images[J]. Water Resources Protection, 40, 9-16(2024).
[6] Qi Q, Zhang C, Yuan Q et al. An adaptive haze removal method for single remotely sensed image considering the spatial and spectral varieties[J]. Geomatics and Information Science of Wuhan University, 44, 1369-1376(2019).
[7] Liang S L, Bai R, Chen X N et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. National Remote Sensing Bulletin, 24, 618-671(2020).
[8] Guenther G, Cunningham A, LaRocque P et al. Meeting the accuracy challenge in airborne lidar bathymetry[C]. Dresden, FRG, 1-27(2000).
[9] Zhao J H, Zhao X L, Zhang H M et al. Shallow water measurements using a single green laser corrected by building a near water surface penetration model[J]. Remote Sensing, 9, 426(2017).
[10] Chen W B, Liu J Q, Zhu X P et al. Spaceborne lidar remote sensing progress and developments (invited)[J]. Chinese Journal of Lasers, 51, 1101011(2024).
[11] Mandlburger G, Pfennigbauer M, Pfeifer N. Analyzing near water surface penetration in laser bathymetry: a case study at the River Pielach[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 175-180(2013).
[12] Zhao X L, Wang X Y, Zhao J H et al. Water-land classification using three-dimensional point cloud data of airborne LiDAR bathymetry based on elevation threshold intervals[J]. Journal of Applied Remote Sensing, 13, 034511(2019).
[13] Pe’eri S, Morgan L V, Philpot W D et al. Land-water interface resolved from airborne LIDAR bathymetry (ALB) waveforms[J]. Journal of Coastal Research, 75-85(2011).
[14] Hu S J, He Y, Tao B Y et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 48, 1113004(2019).
[15] Huang T C, Tao B Y, Mao Z H et al. Classification of sea and land waveform based on multi-channel ocean lidar[J]. Chinese Journal of Lasers, 44, 0610002(2017).
[16] Qiu Z G, Cao B C. Water-land classification method for airborne LiDAR bathymetric data[C], 325-335(2017).
[17] Liang G, Zhao X L, Zhao J H et al. MVCNN: a deep learning-based ocean-land waveform classification network for single-wavelength LiDAR bathymetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 656-674(2023).
[18] Wang D D, Xing S, Xu Q et al. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 51, 750-761(2022).
[19] Li Y Y, Liu Z W, Zhang J K et al. Classification of full waveform data for monochromatic airborne LiDAR bathymetry based on waveform morphological features[J]. Infrared and Laser Engineering, 52, 20230096(2023).
[20] Zhao X L, Liang G, Zhao J H et al. Ocean-land waveform classification based on multichannel weighted voting of airborne green laser[J]. Laser & Optoelectronics Progress, 61, 0901004(2024).
[21] He Y, Tao B Y, Yu J Y et al. Development of airborne LiDAR bathymetric technology and application[J]. Chinese Journal of Lasers, 51, 1101016(2024).
[22] Li Y Z. Research on photon counting lidar bathymetric data processing method[D](2020).
[23] Zhou X, Yang J, Li S. Model of sea surface echos from spaceborne single photon lidar[J]. Acta Optica Sinica, 41, 1928002(2021).
[24] Townshend J R G, Justice C O. Analysis of the dynamics of African vegetation using the normalized difference vegetation index[J]. International Journal of Remote Sensing, 7, 1435-1445(1986).
[25] Tucker C J, Sellers P J. Satellite remote sensing of primary production[J]. International Journal of Remote Sensing, 7, 1395-1416(1986).
[26] Shaker A, Yan W Y, LaRocque P E. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 94-108(2019).
[27] Abdallah H, Baghdadi N, Bailly J S et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 9, 744-748(2012).
[28] Schenk T. Modeling and analyzing systematic errors in airborne laser scanners[R], 1-42(2001).
[29] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).
[30] Feygels V I, Park J Y, Wozencraft J et al. CZMIL (coastal zone mapping and imaging lidar): from first flights to first mission through system validation[J]. Proceedings of SPIE, 8724, 87240A(2013).
[31] Liang G, Zhao X L, Zhao J H et al. Feature selection and mislabeled waveform correction for water-land discrimination using airborne infrared laser[J]. Remote Sensing, 13, 3628(2021).