• Advanced Photonics Nexus
  • Vol. 4, Issue 2, 026012 (2025)
Jiawen Zhi1, Mingyang Xu1, Yang Liu2, Mengyu Wang3..., Chenggang Shao1,* and Hanzhong Wu1,4,*|Show fewer author(s)
Author Affiliations
  • 1Huazhong University of Science and Technology, PGMF and School of Physics, MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, Wuhan, China
  • 2National Institute of Metrology, Beijing, China
  • 3Nanchang Hangkong University, Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang, China
  • 4Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, China
  • show less
    DOI: 10.1117/1.APN.4.2.026012 Cite this Article Set citation alerts
    Jiawen Zhi, Mingyang Xu, Yang Liu, Mengyu Wang, Chenggang Shao, Hanzhong Wu, "Ultrafast and precise distance measurement via real-time chirped pulse interferometry," Adv. Photon. Nexus 4, 026012 (2025) Copy Citation Text show less
    References

    [1] N. Newbury. Searching for applications with a fine-tooth comb. Nat. Photonics, 5, 186-188(2011).

    [2] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [3] S. Cundiff, J. Ye. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys., 75, 325-342(2003).

    [4] V. Torres-Company, A. Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev., 8, 368-393(2014).

    [5] K. Beha et al. Electronic synthesis of light. Optica, 4, 406-411(2017).

    [6] P. Del’Haye et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 10, 516-520(2016).

    [7] T. Kippenberg, M. L. A. Gaeta, M. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [8] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 39, 5512-5517(2000).

    [9] N. Doloca et al. Absolute distance measurement system using a femtosecond laser as a modulator. Meas. Sci. Technol., 21, 115302(2010).

    [10] X. Xu et al. Long distance measurement by dynamic optical frequency comb. Opt. Express, 28, 4398-4411(2020).

    [11] D. Wei et al. Time-of-flight method using multiple pulse train interference as a time recorder. Opt. Express, 19, 4881-4889(2011).

    [12] H. Wu et al. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser. Opt. Express, 22, 10380-10397(2014).

    [13] P. Balling et al. Femtosecond frequency comb based distance measurement in air. Opt. Express, 17, 9300-9313(2009).

    [14] J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett., 29, 1153-1155(2004).

    [15] H. Wu et al. Long distance measurement using optical sampling by cavity tuning. Opt. Lett., 41, 2366-2369(2016).

    [16] M. Cui et al. High-accuracy long-distance measurements in air with a frequency comb laser. Opt. Lett., 34, 1982-1984(2009).

    [17] X. Wang et al. Space position measurement using long-path heterodyne interferometer with optical frequency comb. Opt. Express, 20, 2725(2012).

    [18] J. Zheng et al. Optical ranging system based on multiple pulse train interference using soliton microcomb. Appl. Phys. Lett., 118, 261106(2021).

    [19] T. Yasui et al. Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings. Opt. Express, 23, 11367-11377(2013).

    [20] I. Coddington et al. Rapid and precise absolute distance measurement at long range. Nat. Photonics, 3, 351-356(2009).

    [21] J. Lee et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol., 24, 045201(2013).

    [22] J. Nurnberg et al. Dual-comb ranging with frequency combs from single cavity free-running laser oscillators. Opt. Express, 29, 24910-24918(2021).

    [23] V. Billault et al. All-optical coherent pulse compression for dynamic laser ranging using an acousto-optic dual comb. Opt. Express, 29, 21369-21385(2021).

    [24] H. Zhang et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).

    [25] H. Wu et al. Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry. Appl. Phys. Lett., 111, 251901(2017).

    [26] J. Fellinger et al. Simple approach for extending the ambiguity-free range of dual-comb ranging. Opt. Lett., 46, 3677-3680(2021).

    [27] E. Caldwell et al. The time-programmable frequency comb and its use in quantum-limited ranging. Nature, 610, 667(2022).

    [28] P. Trocha et al. Ultra-fast optical ranging using quantum-dash mode-locked laser diodes. Sci. Rep., 12, 1076(2022).

    [29] H. Wu et al. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser. Appl. Opt., 55, 4210-4218(2016).

    [30] J. Lee et al. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics, 4, 716-720(2010).

    [31] Y. Na et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics, 14, 355-360(2020).

    [32] P. Balling et al. Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy. Meas. Sci. Technol., 23, 094001(2012).

    [33] M. G. Zeitouny et al. Time-frequency distribution of interferograms from a frequency comb in dispersive media. Opt. Express, 19, 3406-3417(2011).

    [34] N. Schuhler et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett., 31, 3101-3103(2006).

    [35] E. Baumann et al. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express, 22, 24914-24928(2014).

    [36] Y. Jang et al. Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep., 6, 31770(2016).

    [37] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [38] M. Suh, K. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [39] J. Wang et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res., 8, 1964-1972(2020).

    [40] Y. Jang et al. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [41] K. Joo, S. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 14, 5954-5960(2006).

    [42] M. Cui et al. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express, 19, 6549(2011).

    [43] G. Tang et al. Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb. Opt. Lasers Eng., 120, 71(2019).

    [44] S. A. van den Berg, S. T. Persijn, G. J. P. Kok. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 108, 183901(2012).

    [45] K. Goda et al. Theory of amplified dispersive Fourier transformation. Phys. Rev. A, 80, 043821(2009).

    [46] K. Goda, B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics, 7, 102(2013).

    [47] Y. Jiang, S. Karpf, B. Jalali. Time-stretch lidar as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [48] H. Xia, C. Zhang. Ultrafast ranging lidar based on real-time Fourier transformation. Opt. Lett., 34, 2108(2009).

    [49] A. Mahjoubfar et al. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017).

    [50] A. Kawai et al. Time-stretch infrared spectroscopy. Commun. Phys., 3, 152(2020).

    [51] K. Hashimoto et al. Upconversion time-stretch infrared spectroscopy. Light: Sci. Appl., 12, 48(2023).

    [52] X. Dong et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt. Lett., 43, 2118(2018).

    [53] G. Pu et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light: Sci. Appl., 9, 13(2020).

    [54] G. Herink et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50(2017).

    [55] Y. Zhou, J. C. K. Chan, B. Jalali. A unified framework for photonic time-stretch systems. Laser Photonics Rev., 16, 2100524(2022).

    [56] B. Li et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun., 8, 61(2017).

    [57] T. Xian, W. Wang, L. Zhan. Real time revealing relaxation dynamics of ultrafast mode-locked lasers. Phys. Rev. Res., 4, 013202(2022).

    [58] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [59] T. Godin et al. Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys.: X, 7, 2067487(2022).

    [60] L. Zhao et al. Nanometer precision time-stretch femtosecond laser metrology using phase delay retrieval. J. Lightwave Technol., 39, 5156(2021).

    [61] A. Mahjoubfar et al. High-speed nanometer-resolved imaging vibrometer and velocimeter. Appl. Phys. Lett., 98, 101107(2011).

    [62] T. Kato, M. Uchida, K. Minoshima. No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb. Sci. Rep., 7, 3670(2017).

    [63] H. Wu et al. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser. Opt. Express, 23, 31582-31593(2015).

    [64] J. Wang et al. Chirped pulse spectrally resolved interferometry without the direction ambiguity and the dead zone. Opt. Lasers Eng., 152, 106892(2022).

    [65] Q. Niu et al. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb. Opt. Express, 30, 35029(2022).

    [66] P. Pavlicek, G. Hausler. White-light interferometer with dispersion: an accurate fiber-optic sensor for the measurement of distance. Appl. Opt., 44, 2978-2983(2005).

    [67] Z. Zhu, G. Wu. Dual-comb ranging. Engineering, 4, 772-778(2018).

    [68] J. Jin. Dimensional metrology using the optical comb of a mode-locked laser. Meas. Sci. and Technol., 27, 022001(2015).

    [69] R. Zhuang et al. Electro-optic frequency combs: theory, characteristics, and applications. Laser Photonics Rev., 17, 2200353(2023).

    [70] M. Xu et al. Ultrafast and precise distance measurement via real-time chirped pulse interferometry(2024).

    [71] H. Wu et al. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser. Meas. Sci. Technol., 27, 015202(2016).

    [72] P. E. Ciddor. Refractive index of air: new equations for the visible and near infrared. Appl. Opt., 35, 1566-1573(1996).

    [73] L. He et al. Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2×1016 based on a low vibration level cryostat. Opt. Lett., 48, 2519(2023). https://doi.org/10.1364/OL.488195

    [74] Z. Wu et al. High-precision surface profilometry on a micron-groove based on dual-comb electronically controlled optical sampling. Appl. Opt., 62, 8793-8797(2023).

    [75] D. Hu et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Opt. Commun., 482, 126566(2021).

    [76] Z. Chen et al. Ultrasensitive DNA origami plasmon sensor for accuratedetection in circulating tumor DNAs. Laser Photonics Rev., 18, 2400035(2024).

    [77] Z. Chen et al. A crispr/cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the omicron variant of sars-cov-2. Natl. Sci. Rev., 9, 104(2022).

    [78] G. Wu et al. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs. Sci. Rep., 3, 1894(2013).

    [79] H. Wu et al. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry. Opt. Express, 24, 24361-24376(2016).

    Jiawen Zhi, Mingyang Xu, Yang Liu, Mengyu Wang, Chenggang Shao, Hanzhong Wu, "Ultrafast and precise distance measurement via real-time chirped pulse interferometry," Adv. Photon. Nexus 4, 026012 (2025)
    Download Citation