• Chinese Optics Letters
  • Vol. 22, Issue 10, 103401 (2024)
Zichen Gao1, Yajun Tong2, Yueran Wang1, Xinyuan Wang1..., Pingping Wen1, Donghao Lu1, Xinye Yuan1, Difei Zhang1, Jingcheng Xiao1, Xiaokai Li2, Zhihao Guan2, Jiacheng Gu2, Yonggan Nie2, Zhi Guo3, Zhen Wang3, Chao Feng3, Jiadong Fan2,* and Huaidong Jiang1,2,**|Show fewer author(s)
Author Affiliations
  • 1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
  • 3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • show less
    DOI: 10.3788/COL202422.103401 Cite this Article Set citation alerts
    Zichen Gao, Yajun Tong, Yueran Wang, Xinyuan Wang, Pingping Wen, Donghao Lu, Xinye Yuan, Difei Zhang, Jingcheng Xiao, Xiaokai Li, Zhihao Guan, Jiacheng Gu, Yonggan Nie, Zhi Guo, Zhen Wang, Chao Feng, Jiadong Fan, Huaidong Jiang, "Characterization of single-pulse photon energy and photon energy jitter at the Shanghai soft X-ray Free-Electron Laser," Chin. Opt. Lett. 22, 103401 (2024) Copy Citation Text show less
    References

    [1] B. McNeil, N. Thompson. X-ray free-electron lasers. Nat. Photonics, 4, 814(2010).

    [2] C. Bostedt, S. Boutet, D. M. Fritz et al. Linac coherent light source: the first five years. Rev. Mod. Phys., 88, 015007(2016).

    [3] C. Pellegrini, A. Marinelli, S. Reiche. The physics of X-ray free-electron lasers. Rev. Mod. Phys., 88, 015006(2016).

    [4] H. N. Chapman, P. Fromme, A. Barty et al. Femtosecond X-ray protein nanocrystallography. Nature, 470, 73(2011).

    [5] M. Suga, F. Akita, M. Sugahara et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543, 131(2017).

    [6] B. Rudek, S.-K. Son, L. Foucar et al. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nat. Photonics, 6, 858(2012).

    [7] C. Mariette, M. Lorenc, H. Cailleau et al. Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nat. Commun., 12, 1239(2021).

    [8] R. Neutze. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 20130318(2014).

    [9] J. Fan, Z. Sun, Y. Wang et al. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Sci. Rep., 6, 34008(2016).

    [10] P. Emma, R. Akre, J. Arthur et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photonics, 4, 641(2010).

    [11] T. Raubenheimer. LCLS-II: status of the CW X-ray FEL upgrade to the SLAC LCLS facility. Proc. FEL, 2015, WEP014(2015).

    [12] T. Ishikawa, H. Aoyagi, T. Asaka et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics, 6, 540(2012).

    [13] H.-S. Kang, C.-K. Min, H. Heo et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics, 11, 708(2017).

    [14] C. J. Milne, T. Schietinger, M. Aiba et al. SwissFEL: the Swiss X-ray free electron laser. Appl. Sci., 7, 720(2017).

    [15] W. Decking, S. Abeghyan, P. Abramian et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics, 14, 391(2020).

    [16] T. Liu, X. Dong, C. Feng. Start-to-end simulations of the reflection hard X-ray self-seeding at the SHINE project. Proceedings of the 39th International Free Electron Laser Conference—FEL, 254(2019).

    [17] S. Ackermann, A. Azima, S. Bajt et al. Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm. Phys. Rev. Lett., 111, 114801(2013).

    [18] E. Allaria, R. Appio, L. Badano et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics, 6, 699(2012).

    [19] Z. Zhao, D. Wang, Q. Gu et al. SXFEL: a soft X-ray free electron laser in China. Synchrotron Radiat. News, 30, 29(2017).

    [20] E. L. Saldin, W. Sandner, Z. Sanok et al. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett., 85, 3825(2000).

    [21] W. Ackermann, G. Asova, V. Ayvazyan et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 1, 336(2007).

    [22] V. Ayvazyan, N. Baboi, J. Bähr et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J., 37, 297(2006).

    [23] H. Lee, J. Shin, D. H. Cho et al. Characterizing the intrinsic properties of individual XFEL pulses via single-particle diffraction. J. Synchrotron Radiat., 27, 17(2020).

    [24] Z. Gao, J. Fan, Y. Tong et al. Single-pulse characterization of the focal spot size of X-ray free-electron lasers using coherent diffraction imaging. J. Synchrotron Radiat., 30, 505(2023).

    [25] M. Harmand, A. Ravasio, S. Mazevet et al. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments. Phys. Rev. B, 92, 024108(2015).

    [26] P. Karvinen, S. Rutishauser, A. Mozzanica et al. Single-shot analysis of hard X-ray laser radiation using a noninvasive grating spectrometer. Opt. Lett., 37, 5073(2012).

    [27] M. Harmand, M. Cammarata, M. Chollet et al. Single-shot X-ray absorption spectroscopy at X-ray free electron lasers. Sci. Rep., 13, 18203(2023).

    [28] X. Hong, Z. Chen, T. S. Duffy. Absolute X-ray energy calibration over a wide energy range using a diffraction-based iterative method. Rev. Sci. Instrum., 83, 063901(2012).

    [29] M. L. Hart, M. Drakopoulos, C. Reinhard et al. Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction. J. Appl. Crystallogr., 46, 1249(2013).

    [30] C. Horn, K. M. Ginell, R. B. Von Dreele et al. Improved calibration of area detectors using multiple placements. J. Synchrotron Radiat., 26, 1924(2019).

    [31] J.-D. Fan, Y.-J. Tong, Y.-G. Nie et al. First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray free-electron laser facility. Nucl. Sci. Tech., 33, 114(2022).

    [32] S. A. Self. Focusing of spherical Gaussian beams. Appl. Opt., 22, 658(1983).

    [33] Z. Huang, K.-J. Kim. Review of X-ray free-electron laser theory. Phys. Rev. Spec. Top. Accel. Beams, 10, 034801(2007).

    [34] J. A. Bearden, A. F. Burr. Reevaluation of X-Ray atomic energy levels. Rev. Mod. Phys., 39, 125(1967).

    [35] Y. Tong, J. Fan, Y. Nie et al. Kirkpatrick-Baez mirrors commissioning for coherent scattering and imaging endstation at SXFEL. Front. Phys., 10(2022).

    [36] R. Neutze, R. Wouts, D. van der Spoel et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752(2000).

    [37] B. K. McFarland, N. Berrah, C. Bostedt et al. Experimental strategies for optical pump–soft X-ray probe experiments at the LCLS. J. Phys. Conf. Ser., 488, 012015(2014).

    [38] P. Wachulak, M. Duda, A. Bartnik et al. NEXAFS at nitrogen K-edge and titanium L-edge using a laser-plasma soft X-ray source based on a double-stream gas puff target. APL Photonics, 4, 030807(2019).

    Zichen Gao, Yajun Tong, Yueran Wang, Xinyuan Wang, Pingping Wen, Donghao Lu, Xinye Yuan, Difei Zhang, Jingcheng Xiao, Xiaokai Li, Zhihao Guan, Jiacheng Gu, Yonggan Nie, Zhi Guo, Zhen Wang, Chao Feng, Jiadong Fan, Huaidong Jiang, "Characterization of single-pulse photon energy and photon energy jitter at the Shanghai soft X-ray Free-Electron Laser," Chin. Opt. Lett. 22, 103401 (2024)
    Download Citation